Identification a novel mononucleotide deletion mutation in GAA in pompe disease patients

نویسندگان

  • Milad Ebrahimi
  • Mahdieh Behnam
  • Nafiseh Behranvand-jazi
  • Ladan Yari
  • Sajad Sheikh-kanlomilan
  • Mansoor Salehi
  • Pardis Tahmasebi
  • Mohaddeseh Amini
  • Mohaddeseh Behjati
  • Nafisehsadat Hosseini
چکیده

BACKGROUND Mutations in the acid alpha-glucosidase (GAA) gene usually lead to reduced GAA activity. In this study, we analyzed the mutations of GAA and GAA enzyme activity from one sibling suspected Pompe disease and their first-degree relatives. MATERIALS AND METHODS In this cross-sectional study, GAA enzyme activity assay was assessed using tandem mass spectrometry. Polymerase chain reaction and Sanger sequencing were performed for GAA analysis. RESULTS GAA enzyme activity was significantly decreased in patients compared to the normal range (P = 0.02). Two individuals showed ten alterations in the GAA sequence, in which one of them (c. 1650del G) has not been previously described in the literature. A single Guanine deletion (del-G) was detected at codon 551 in exon 12. CONCLUSION According to the literature, the detected change is a novel mutation. We hypothesized that the discovered deletion in the GAA might lead to a reduced activity of the gene product.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy

Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...

متن کامل

Clinical and molecular genetic study of infantile-onset Pompe disease in Chinese patients: identification of 6 novel mutations.

Pompe disease is an autosomal recessive disorder and is caused by a deficiency in acid alpha-glucosidase (GAA). A broad range of studies have been performed on Pompe patients from different countries. However, the clinical course and molecular basis of the disease in Mainland China have not been well defined. In the present study, we examined a total of 18 Chinese children with infantile-onset ...

متن کامل

Identification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...

متن کامل

A novel homozygous mutation at the GAA gene in Mexicans with early-onset Pompe disease

Glycogen-storage disease type II, also named Pompe disease, is caused by the deficiency of the enzyme acid alpha-glucosidase, which originates lysosomal glycogen accumulation leading to progressive neuromuscular damage. Early-onset Pompe disease shows a debilitating and frequently fulminating course. To date, more than 300 mutations have been described; the majority of them are unique to each a...

متن کامل

Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.

Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2017